Ammo Counter Assembly Instructions

Counter Assembly

DIY assembly guide for the ammo counter.  If you ordered an unassembled circuit kit, this is the instruction page for you.

Assembly order is from the center outward to minimize solder bridges.  Keep some solder removal braid handy to remove any bridges between pads.

BACK OF THE PCB

  1. Install the IC, making sure to orient with pin1 indication on the PCB
  2. Install the three resistors.
    1. 2x 10k on the bottom
    2. 100 ohm on the top
  3. Install the LEDs and bend into position to match your install location.
    1. LED on top center position (unmarked)
    2. LED on bottom marked position.

Note: The LED polarity is not marked on the board. See the wiring section for additional help.
You can also look at the copper traces that connect to the LED socket.  The ground is connected in multiple points.  The positive is connected to a single trace.

  1. Install the capacitor to the top of the PCB.

 

FRONT OF THE PCB

  1. Install the diode, leave the leads long and do not solder yet.
  2. Install the display but do not solder yet.  Orient the same as the graphic 8.8.
  3. Bend the diode down and out of the way of the display.
  4. Solder the display and diode.

WIRING

+---------------------------+
|+-------------------------+|
||  +-----+      +-----+   ||
||  |     |      |     |   ||
||  |     |      |     |   ||
||  +-----+      +-----+   ||
||  |     |      |     |   ||
||  |     |      |     |   ||
||  +-----+ .    +-----+ . ||
|+-------------------------+|
|1 2   3 4   5  -====-  8 9 |
+---------------------------+

+---------------------------+
|           11 10           |
| .  .  .  .  .  .  .  .  . |
|    =.1uF=          =100=  |
|---------------------------|
|\   ATTINY2313            ||
|/                         ||
|---------------------------|
|  =10k=             =10k=  |
| .  .  .  .  .  .  .  .  . |
|9 8   7 6    5    4 3   2 1|
+---------------------------+

Signal Name Location Ground
FIRE SWITCH 1. Fire Signal 2. Ground
AMMO AVAILABLE LED 3. LED + 4. Ground
POWER 6. Battery + 7. Ground
RELOAD SWITCH 9. Reset Signal 8. Ground
Top LED (Always ON) 10. LED + 11. Ground
NOT USED 5. FX

 

Note: Power socket overlaps with the diode.  Be careful not to short.

 

TESTING

  1. After connecting power, you should see the display light up with the current clip size.
  2. Press the fire button to decrement the ammo count.
  3. Press the reload button to reset the count.
  4. When the count reaches zero, the Ammo Available LED will turn off.
  5. Additional fire modes are accessed by holding the fire button while pressing reset.  Display will read F1, F2, F3 to indicate the selected fire mode and clip size.  Release the fire button to save your selection.

 

PCB Trace Reference

This section is useful for modification and troubleshooting.  You can see where the trace wires go on the pcb.

Top

Counter_3.11 FRONT_PCB

Bottom

Counter_3.11 BACK_PCB

Reference Pictures

Additional pictures are on flickr.

 

Final assembly.  Shows placement of diode below the display.

Counter Assembly

 

Display is not soldered down yet.  LED leads bent to match install positions. Shows orientation of chip.

Top resistor pictured is 150 ohm, kit includes 100 ohm.

 

Counter Assembly

 

Orientation of display to front

Counter Assembly

Supernatural EMF Reader

This is a summary post of my finished “revision 1″ EMF Reader from Supernatural.  For revisions 2 and 3, please email me for the latest instructions.

Below you will find the following sections:

  • Description and Pictures
  • Part List
  • Rough Step by Step Build Instructions

IMG_2709.JPG

 

Description and Background:

The EMF Reader in Supernatural is an excellent project for people like me that have some electrical knowledge. What I did was design a prop EMF reader around the Arduino platform so that it is actually functional while still looking like the prop from Supernatural.

I went to my local hardware store and bought an analog multimeter. After taking it apart, I played with it on an Arduino board and figured that it was possible to make a functional EMF reader using some off the shelf parts. I could even have the circuit play the telltale “erREEEEErr” sound on a speaker.

I finished the prototype circuit and proceeded to sourcing all the parts and designing a printed circuit board (PCB) that would do everything I wanted.

I measured the analog meter part with my caliper to ensure a good fit with the custom PCB.

In addition, this thread was very useful for finding reference pictures: http://www.therpf.com/showthread.php?t=115093

Functionality:

  • Meter with a pin that bounces to high when triggered
  • Five top LEDs that match meter display
  • Speaker that makes tone sweep sounds
  • Hidden trigger button to override EMF “readings”
  • Mode selector switch
  • When not activated, the lights will blink every few seconds to indicate the meter is on.

Pictures of my Completed Supernatural EMF Reader:

Link to full album on flickr.

https://farm4.staticflickr.com/3952/15611186946_f8a3560308.jpg

https://farm6.staticflickr.com/5600/15449301180_905d6d813a_m.jpg https://farm6.staticflickr.com/5601/15014108624_855726fd42_m.jpg

https://farm4.staticflickr.com/3944/15428820969_2bdd7f5ca8_m.jpg https://farm4.staticflickr.com/3952/15448890837_1fa282bb9e_m.jpg

 

Step by step build instructions

Review the part list is on google docs: https://docs.google.com/spreadsheets/d/1utMpaAC1ZA9goVU3gp6g81bixKeKB2StwvKHZPLGDF8/edit?usp=sharing

Once you have gathered all the parts, it is time to assemble. This does require minor solder skills.

If you have never soldered before, it’s easy! Get a $5 solder iron from the hardware store and the thinnest solder spool you can find. Then watch some YouTube videos to see how it’s done. Through hole soldering of big solder points (like in this project) is great for learning.

Salvage Parts and Test the Fit

Analog Meter

Take apart the multimeter to get at the analog mechanism inside. You will need the clear plastic from the front, the needle rotor, and the thumbwheel.

Cut a hole in the prototype board and do a “test fit” of the rotor. Make sure that it can spin freely. Eventually, it will be bolted down with washers to ensure the needle has enough clearance to move above the surface.

Switches and Knobs

Put all the various parts where you think they should go. Make sure that you have enough room for everything where you want them before you start soldering parts into place.

Assemble the functioning portion of the circuit

Arduino

You have two choices to get the circuit functioning. Use an Arduino Pro Mini or use an Atmega328p chip. The Arduino is easier and recommended. I chose the Atmega328p chip because I was using a custom made prototype board that had wires pre-routed to the various switches.

  • Advantages of the Arduino Pro Mini: Easy to use and program over USB using the Arduino software. Use this for your source code: https://codebender.cc/sketch:56076
    Note: there are 4 files to download.
  • If you choose the Atmega328p Chip, things get a little more complicated (you are on your own). More info here: http://arduino.cc/en/Main/Standalone
  • If you purchased a circuit board from Dustin (me), then there is nothing you need to do.  Your circuit is preprogrammed.

Mode Select Switch

Solder in place the toggle switch. Depending on your Arduino, pull up resistors may be required. More info here: https://learn.sparkfun.com/tutorials/pull-up-resistors/what-is-a-pull-up-resistor

Wire one of the toggle switch’s two side pins to pin 2 on the Arduino. The center is the common pin, wire to ground on the Arduino.

LEDs

Install the 5 LEDs at the top of the prototype board. The short lead from the LED goes to ground. The long lead from the LED goes to the Arduino.

Wire the LEDs to the Arduino pins in the following order: 2,4,6,7,8 (pin 5 is reserved for the meter output)

You can also install the white and yellow dummy square capacitors now if you like. These are cosmetic only and are not wired to the circuit. Solder them to the prototype board normally.

Cover the LED leads with electrical tape. This too is cosmetic, but also helps hold the LEDs down when you are handling the EMF reader.

Meter Potentiometer

Solder in place a blue square potentiometer. This will be used to adjust the meter sensitivity.

https://farm4.staticflickr.com/3948/14942253803_4190afceca_m.jpg

Pictured is my custom PCB. If you are using a different prototype PCB board, yours will look different.

Analog Meter

Install the meter onto the PCB, use two washers between the meter and the PCB to give the needle more clearance over the surface. Attach the meter using 2 screws, 8 washers, and 2 hex standoffs.

The washers on the backside of the PCB will help spread out the squeeze from the screw and hex standoff.

Wire the red wire from the meter to the analog output pin 5 of the Arduino through a potentiometer. The black wire goes to ground.

The potentiometer is used to “tune” the max point of the meter. The analog meter has a screw in the center; this is used to set the min point of the meter.

Later, when you are ready to power up, you can adjust the potentiometer with a screw driver until it performs right.

Printed Graphic

Download the .psd file here: https://www.mediafire.com/?cm0quv5bc5d9qa2

Print onto peel and stick adhesive photo paper, then trim the print then stick on the protoboard behind the meter’s needle.

https://farm6.staticflickr.com/5614/15580793151_c6274679b2_m.jpg

Use hot glue or epoxy to affix the clear plastic cover over the meter.

Assemble the cosmetic portion of the circuit

Capacitors

There are two round capacitors in the upper left corner of the board. Solder them in place. It is ok if they are not straight up and down.

Thumbwheel

Solder on the thumbwheel below the meter.

Antenna P-Clips

Place the antenna clips on the antenna and drill the prototype board so you can eventually bolt the antenna in place. Do not bolt down yet. Right now we just need to get the spacing between the P-clips in the correct position.

Coil 1

The first coil goes on the right hand side of the meter. Use your magnet wire to create this coil by winding the 22 gauge bare copper wire around a pen or screwdriver. Once the coil is long enough, cut off the excess and solder down.

With the coil soldered down, re-insert your pen or screwdriver and straighten the coil out.

Coil 2 (antenna)

The second coil is wrapped around the antenna between the two Pclips. Use the red magnet wire. This wire is a lot thinner and will take many layers. Just keep wrapping around until your coil looks right.

Antenna Bolts

It is now time to bolt the antenna in place. Use the screws, washers, and nuts.

Rainbow Wire

Take approximately 10 inches of rainbow ribbon wire and split them apart into separate strands. Half of the strands will run from the top right to the lower left. The second half of the strands will run from the lower right to the lower left.

Use more of the 22 gauge bare copper wire to create U shaped cable ties. Thread the ribbon wire under the U, then press down with a plyers and solder the U wire down.

If you look closely in the pictures, you can see these cable ties are used in the corners to hold down the ribbon cable.

Final Hex Standoffs and Battery Holder

Place the last two hex standoffs between the LEDs. With all four hex standoffs now attached, use them as a guide to cut holes into the battery holder and affix the battery holder to the EMF reader with more screws and washers.

https://farm4.staticflickr.com/3951/15459480888_dd5be5f505_n.jpg

https://farm6.staticflickr.com/5601/15014108624_855726fd42_n.jpg

Sound and Speaker

Pin 11 from the Arduino outputs the sound. However, if you connect a speaker directly to pin 11 and ground, you will have little volume. You need a speaker amplifier.

The PAM8403 is a cheap (under $2) small amplifier board. Wire the amplifier board to the battery power input, 4.5 volts. Then wire pin 11 from the Arduino into the input of the amplifier board. Lastly, wire the two wires from the speaker into the amplifier board’s output.

https://farm4.staticflickr.com/3946/15024643424_00064fb169_n.jpg

Ammo Counter – 5 years of Success

Over the years I have taken pride in my ammo counter kit.  As far as I know, it is the cheapest ammo counter kit available.  I achieve my low price by my minimalistic design and versatility through programming.  Just 6 parts and custom programmed to meet your needs!

The ammo counter kit is my longest selling kit and as the 5 year anniversary is coming up, I wanted to go through my records and count just how many.  I came up with the number of ~185 ammo counters sold since I first made them available in 2009.

Year Sold
2014 25
2013 100
2012 25
2010 25
2009 10

Numbers are based on my part orders of the attiny microcontroller from my suppliers.  The ammo counter uses the attiny2313/4313 family microcontroller.

The original ammo counter went on sale in 2009, and was actually only my 3rd prop circuit I had designed.  The first two were my Proton Pack and my Energy Sword circuits.

I continued selling ammo counters and other prop electronic kits on commission until 2011, when I focused on perfecting my cortana kits, and perfect them I did. This is the kit I offered for the 2012 season.

After revamping my store website and resuming automated orders, demand remained steady for my ammo counters, but you can see that spike in ’13. Wow, what a year !  Thanks for the traffic guys, 405th.com, soaringhammer (closed), and therpf forums.
I would also like to extend a special thanks to some of the prop makers that use my kits in their props.

ZZLT LTAR Display

Announcing general availability of the ZZLT LTAR Display designed by Ryan Bales.  This also marks the discontinuation of my previous number display LTAR counter.  The ZZLT LTAR Display is an amazing circuit and is the perfect mod for your LTAR tagger.

The advantages of the ZZLT LTAR Display over the LTAR Number Display are numerous.

  • Bar graph indicator to match previous generation LTX displays
  • Leverages the LTAR headphone jack to be compatible with all game modes!!!
  • Lower power requirements
  • Designed to match contours of LTAR iron sight
  • Advanced modes to find player number in hosted games
  • Easier installation, just 4 wires.  I have put together a video of what to do & not to do. Installation Video on YouTube.

What people are saying about the ZZLT LTAR Display:

March 24th, 2014
Featured on Tactical Tag: LTAR Display!! and will be compatible with future stock offerings.

June 12th, 2014
Check out this amazing LTAR mod from Jason Wall that leverages the ZZLT LTAR Display and a custom stock  mount.  More pictures available on the Facebook: Lazer Tag Modders group pages.

LTAR-eLite

New Beginnings – Sword 2014

Announcing a new sword electronics design and a partnership.

I have been working alone the past years on an updated energy sword circuit design.  Something that would allow me finer control of the LEDs without the burden of soldering the old massive LED arrays.  Details of my 2009 sword design.

Joshua Kane had been working independently on his own sword controller circuit, build completely from arduino modules.  You can see a write-up of his original project here: Stunning Halo 3 Costumes and Energy Sword

The outer shell of our both swords were made by an amazing sculptor named Sean Bradley.  It was through Sean that Josh and I met each other; and beginning last fall, we began working closely to bring an arduino based sword controller to life as a kit.

New Features

  • Motion activated Sound Effects
  • Motion activated Lighting Effects
  • Lighting Animations: Extend, Detract, Pulsate, Flicker, Clash
  • LED arrays are off-the-shelf LED Strips of varying prices and pixel densities from Adafruit.
  • HD MP3 sound effects (and LOUD too, thanks to the built-in amplifier plus speaker)
  • Lastly, this circuit is USB programmable using the Arduino Software as a Leonardo board.

 

Preview of the 2014 sword circuit

sword2014

Another thing to note on this circuit board is the accelerometer chip on the back.  Wow, is that guy tiny!  Putting my hot air rework station to good use to get that guy soldered.

 

LTAR Display

Final install - LTAR Display

I love the lazer tag augmented reality (LTAR) tagger.  When playing unhosted grab and go game types, your choices are between the LTAR and the LTX taggers for 25 health gametypes.  The LTAR handles much nicer in my opinion, but without an iphone the LTAR lacks any indicator of health / shields remaining during gameplay.

To solve this, I wrote some software to put on my existing ammo counter circuit.  The software allows my circuit to sync with the LTAR during gameplay, or at least anticipate an accurate count of health and shields remaining.  This post will serve as a guide of assembling the ammo counter circuit, modifying the LTAR, and installing the circuit.  Usage and troubleshooting is at the bottom.

The LTAR Display kit is available in the store.

 

Updated (Jan 7th, 2014): Added hosted gametypes.

 

 

Assembly and Testing of the Circuit

The circuit kit comes unassembled. All parts in the kit are through-hole type and can be soldered by hand.  The pin arrangements are tight, and you may need to use desolder braid to correct any mistakes while soldering.

Tools and Materials Required

  • Solder Iron
  • Stranded Wire
  • Desolder Braid

Circuit Assembly Instructions

LTAR Display Kit Parts

1. Make sure you have all the parts.  Your kit included:

  • circuit board
  • chip (attiny4313)
  • display (2digit)
  • resistor (10kohm)
  • capacitor (0.1uF)
  • diode
  • optional: bezel, overlay, and polymorph beads (use later).
LTAR Display Assembly Step 01
2. Trim the PCB.  The circuit board may have flanges on the edges, these are easily snapped off with a pliers. LTAR Display Assembly Step 02
3. Examine the circuit board and chip. Find the pin 1 indicators, this is a small indentation on the chip and a white half circle on the circuit board.  Place the chip onto the circuit board and solder in place. LTAR Display Assembly Step 03
4. Depending on your circuit board revision, you may have extra spots that will be left blank.  Follow instructions for your board revision.

Board revision 3.11:

1. Place the capacitor and resistor as shown. Capacitor in the 0.1uF spot and Resistor in the left side (reset) 10kohm spot. LTAR Display Assembly Step 05
2. Solder in the resistor. LTAR Display Assembly Step 06
3. Trim the excess lead from the resistor. LTAR Display Assembly Step 07
4. Solder in the capacitor. LTAR Display Assembly Step 08
5. Trim the excess lead from the capacitor.
6. Flip the board and place the diode, take note of the line on one side for orientation. Do not solder yet, you will need to position below the display. LTAR Display Assembly Step 09
7. Examine the board to identify correct display orientation.  Notice the periods in the 8.8.  Place the display into the board following the indicated orientation, do not solder yet. LTAR Display Assembly Step 09b
8. Use a pliers to bend the diode below the display, this will pull the diode out of the board slightly.
9. Now you may solder down the diode and display.
10. Lastly, add five 10 inch wires to the following locations on the bottom of the board (either use colored wires or label the wires for future reference).  When soldering the wires, bend them upward.  During install, clearance space will be tight at the bottom of the board.

  • Batt Ground (This goes to the LTAR’s ground)
  • Batt + (This goes to the LTAR’s 5 volt rail)
  • FX (This goes to the LTAR’s Hit+ beacon LED signal)
  • LED + (This goes to the LTAR’s shield button signal)
  • Fire + (This goes to the LTAR’s fire button signal)
LTAR Display Assembly Step 09c
11. Your circuit is now assembled and ready for testing, proceed to the next step below.

Note
: You will have extra spots left blank on the 3.11 board revision.  When you finish, you will have open spots for a top 100 ohm resistor and a right side (fire) 10kohm resistor. These are supposed to be empty.

Board revision 4.01

1. Solder in the capacitor into the 0.1uF spot.
2. Solder in the resistor in the bottom left side 10kohm spot.
3. Solder in the resistor in the top right side in the 150 ohm spot.Note: This resistor determines the brightness of the display.  A 150 ohm resistor makes the display a reasonable brightness.  However, you may wish to swap in a lower value resistor to make the screen brighter.  You may also short this spot with a wire for maximum brightness (not recommended).
4. Solder in the diode, take note of the line on one side for orientation.
5. Flip the board and identify the correct display orientation. Notice the periods in the 8.8.  Place the display into the board following the indicated orientation. Solder in place.
6. Lastly, add five 10 inch wires to the following locations on the bottom of the board (either use colored wires or label the wires for future reference).  When soldering the wires, bend them upward.  During install, clearance space will be tight at the bottom of the board.

  • Batt Ground (This goes to the LTAR’s ground)
  • Batt + (This goes to the LTAR’s 5 volt rail)
  • Hit+ (This goes to the LTAR’s Hit+ beacon LED signal)
  • Shield (This goes to the LTAR’s shield button signal)
  • Fire (This goes to the LTAR’s fire button signal)
7. Your circuit is now assembled and ready for testing, proceed to the next step below.

Circuit Testing

You now have an assembled circuit.  Before powering up for the first time, take a moment and examine your work.  Look for any solder bridges (shorts) and cleanup as needed.  If you have a 2 or 3 AA battery pack, you may use it to power up the circuit.  If you do not, you can use the LTAR’s battery pack.  Wire the Batt Ground and Batt + wires from the circuit to three batteries only.  DO NOT OVERPOWER.  The circuit can only handle voltages up to 5.5volts.  The LTAR is capable of voltages up to 9 volts.

If all went to plan, your display should now be lit.  Because the other wires are not connected, your display should also count down from 10 to 0 indicating a game has started.

Ensure all segments of the display are lighting through the countdown sequence. If any segments of the display do not light up, recheck the solder joints of each pin of the display.  Then recheck the solder joints to the chip.  If still unsuccessful, poke each joint with the solder iron and add more solder.

Modifying the LTAR

Congrats~! You have a working circuit and will now prepare the LTAR to install the display.  Two dremel bits are recommended, the cutting wheel and the felt polishing wheel.

Tools and Materials Required

  • Screw Driver
  • Rotary Sander (dremel)

Instructions

  1. If you have a bezel, you will notice that there is excess material.  Cut off the extra plastic with a sharp knife or use a dremel tool.  Polish the edges when done to give the bezel a smooth appearance.
  2. Remove the top sight attachment from the LTAR.  This is the piece we will modify to hold the display.
  3. Hold the bezel against the sight and mark the inner and outer edges.  This will be your guide for cutting.
  4. Remove the screws from the sight attachment and separate into halves.  This will make cutting the internal structures easier.
  5. Cut out the inner edge markings. Do not cut out the outer area, this will be needed to glue the bezel to.
  6. Determine where you will place the display.  It must be low enough to fit behind the wide section of the bezel and high enough to cram the wiring.  The better you are at making the display flush with the bezel and overlay, the more crisp the numbers will appear behind the overlay*.
  7. In the area that will contain the display, cut a square area out.  Use the outer edge markings.
    Dremel cutting the attachement Alignment Check
  8. Continue adjusting until you are satisfied.  At this point, you may want to use your dremel’s soft polishing wheel to knock down any rough edges.

* This is a mistake I made in my initial prototype.  In the pictures, you can see the display is slightly blurry and light leaks from the edges.  This was caused by an approx 1cm gap between the bezel overlay and the display.  The light reflects off the overlay and goes where light shouldn’t.

 Installing the Display Circuit

At this point you should have an assembled circuit and a modified LTAR sight attachment.  You are now ready to open the LTAR and wire the display into the LTAR’s main board.

Tools and Materials Required

  • Screw Driver
  • Solder Iron
  • Hot Glue Gun or Epoxy
  • Hot Air Gun or Hot Water

Instructions

  1. Remove the battery tray and open the LTAR.  There are 11 screws on the main body, 2 screws in the shield arm, and 4 screws in the sight attachment.
  2. When removing the shield arm, be careful of the spring. Note it’s position before gently removing.
  3. When you first open the LTAR, be sure to grab the battery tray bolt.  It is loose and easily lost.
  4. With the LTAR open, take a moment to examine the layout.  There is no need to remove the fire / shield buttons, main board, forward lens assembly, or the top receiver dome.  We will be soldering the display circuits wires to the top of the main board.
  5. You have two choices for running the wiring.  You may use the existing square hole that currently houses the iphone headset cable or cut a new hole.  In my prototype, I chose to relocate the iphone headset cable internal (in case I needed it later), see picture.
    0cc8ad5c-7a72-4a81-a1fc-535ed9d7ef9e
  6. Position the display circuit above the LTAR, you will need to leave approx 5 inches of wire slack between the LTAR shell and the circuit.
  7. Route the wires around and below the main board as needed to reach the positions pictured.  Trim the excess wire lengths.
    Notes: It is hard to tell in the picture, but there is a chip resisistor just above the fire signal location, be careful not to solder the fire wire there.
    ltar_display_wiring
  8. If everything looks good, go ahead and insert the battery pack.  No need to close the LTAR shell yet.
  9. You should immediately see the display light up, even if the LTAR is still off.  This is correct operation.
  10. Flip the switch to turn on the LTAR, the display will flash for a moment.
  11. Press the shield button to test toggling gametypes.
  12. Press the fire button to begin a game.
  13. Use a second tagger to test receiving hits and the display reports health remaining.
  14. Pregame and postgame, the display will power down after 60 seconds of no button presses.  You can re-awaken by turning the LTAR on/off.
  15. Once satisfied that the circuit is installed correctly, you may now reassemble the LTAR.  If you are having trouble with the wiring, please email me a picture of your LTAR’s main board and display circuit wiring.
    Note: The trickiest part is reinstalling the spring loaded shield button, you remember how it was positioned, right?
  16. With the display wiring installed / routed and the LTAR re-assembled, you can now glue the display into the LTAR sight attachment and screw together. Should look something like the picture now.
    Note: DO NOT glue the display circuit or sight attachment to the LTAR body.  You will still need to access the to the inside of the sight / display to finish the install.
    Alignment Check
  17. Next up is the bezel. Position above the display and test the fit with the overlay.  This is your last chance for any late adjustments.  Remember, the overlay must be flush with the display to look best, any gap will lead to a cloudy display.
  18. Remove the overlay, and use hot glue to affix the bezel over the display.  Be sparing with the glue as we will be covering it with stronger polymorph plastic next.
  19. You now have a nice bezel atop your display, but no overlay and there is an ugly gap between the plastic of the bezel and the plastic of the sight attachment.  Breakout the polymorph plastic.Side rant: I really love polymorph plastic. Simplifies the the process of bondo and sanding and resin hardener and curing… all down to melting some beads and smushing them into place.  If you mess up, just reheat and try again and again and again :D
  20. To melt the beads, I use a temperature controlled hot air gun set to 100C, the melting point of the beads is only 60C so I stop heating when the beads turn from white to clear.  At 60C the beads are safe to handle and a bit sticky.
    Note: Be careful here.  The LTAR plastic is also made from thermoform plastic, meaning it will melt when it gets hot enough.  100C is not enough to melt the LTAR body, but your hot air gun may be more powerful.  A non-temperature regulated hot air paint stripper for example gets up to 600C, which is plenty to melt EVERYTHING.  You are better off using the hot water method.  See youtube for some tutorials.
    Polymorph fills the gap Smooth polymorph - LTAR Display
  21. Click the pictures for a closer look.  Place the beads in a row, heat with hot air until the beads change color to clear.  Then push into the gap.  Repeat until the gap is filled all the way around the outside of the bezel.
  22. Continue reheating as needed to push the edges into a nice clean and straight shape.
  23. You may use the dremel felt polishing wheel here to smooth the plastic further, removing fingerprints ;)  Be careful and polish in short strokes with time between for the plastic to cool.  The friction of the polish wheel is enough to reheat the polymorph to become pliable.
  24. Ok, FINALLY, it is time to install the overlay into the bezel.  Use hot glue on the top and bottom.  Remove the sight attachment / display from the LTAR body to add glue between the overlay and the bezel walls.
  25. Cleanup time.  More polish, some painting.  Not shown in pictures.

Usage

Using the display with your LTAR is straightforward. A quick demo can be seen in the video below.

Unhosted Games:

  1. Turn tagger off and on, this will wake the display
  2. Press shield button to switch between 10 and 25 health gametypes.
  3. Press trigger to start game, 10 second countdown begins
  4. Display will show remaining health / shields during game.

Hosted Games

TBD

 

Custom Number Entry

TBD

 

 

Troubleshooting

Here are some fixes to common issues with the LTAR display.

I turned my gun off mid-game and now the display won’t turn off.
Turn the LTAR on and off, this will reset the display and allow it to power off after 60 seconds.

I tapped the shield button, and now the display is out of sync with the gun.
This can be caused by not holding the shield button long enough.  When using an LTAR with a display installed, give the shield button a good solid press (1/2 second is plenty) so that both the LTAR and the Display can see the button press.  Brief button presses can be missed by one or both circuits due to scheduling / debouncing routines.  Recommend experimenting with different button press styles to ensure you can manage yourself in the field.

I turned off my shield and was still holding down the shield button when I was shot, now the display is out of sync with the gun.
Yeah, don’t do that.

 

Halloween Yard Display: Alien Spaceship Crash

IMG_2136.JPG

History:

I moved to a new neighborhood over a year ago, and as Halloween 2012 approached I quickly found out that tricker treating participation on my block is very low.  Standing on the street, I looked up the street and down, seeing two other neighbors aside from myself with porch lights on.  Overall, the street was dark and parents didn’t lead their kids down my street.  This all resulted in me counting less than 10 kids to my door, and me with leftover candy. Sad face.

Halloween 2012: Yard Display

Graveyard

The graveyard from last year was great and I got plenty of compliments for the clever names (written by my Mother and her pinterest browsing).

  • Izzy Gone
  • Yul B. Next
  • Alex Blaine Laider
  • Otta B. Alive
  • Lee Ning
  • Anna Rexic
The graveyard was great and there was favorable weather halloween night.  None of that mattered for 2012.

 

Halloween 2013: Yard Display

Fast forward to this year to up the ante. A spaceship crash scene with alien visitor.  More pictures are on Flickr.

IMG_2115.JPG

I didn’t know where to start, so I asked a few friends to help with the spaceship design.  Below the inner structure is shown.  The support beams were made from 2×2 wood.  The paneling is made from corrugated plastic (normally used for outdoor signs).  The top dome is the heaviest piece made from a glass chandelier.  I would have rather made the dome from plastic, but a large sized plastic dome is hard to find as junk.

UFO

 

 

 

Cortana Dog Tags Revisited

Next batch of cortana blanks are in and they look fantastic!  This is a new black and silver design, previously was purple and gold.  Click here to order a Cortana Dog Tag!

IMG_1873

 

Next picture is a comparison of a purple cortana (populated) vs the black cortana (blank).

IMG_1872

Cortana Dog Tags

In preparation for Halo 5, I am proud to announce the availability of Cortana Dog Tags! If you haven’t seen the trailer yet, check it out here~!

The Dog Tags are in the store under Blank Cortana Circuit.  Select the option to add dog tags and you will get a custom engraved dogtag, chain, and a eagle sticker!

Updated July 6, 2013: Wow, thanks for the enthusiasm everyone. Cortana dogtags are sold out, there is a 3 week wait on the next batch.

 Halo 5 tag

Click images for high res.

Store Online 2013

Thanks for your patience everyone, the store pages are back.   Three whole days before Summer ;)  in what I am calling technically a Spring launch, lol.

IMG_0949.JPG

As always, watch my flickr page for current project updates.